Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes.

Identifieur interne : 000410 ( Main/Exploration ); précédent : 000409; suivant : 000411

The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes.

Auteurs : Ángel G. Valdivieso [Argentine] ; Mariángeles Clauzure ; Macarena Massip-Copiz ; Tomás A. Santa-Coloma

Source :

RBID : pubmed:26741366

Descripteurs français

English descriptors

Abstract

BACKGROUND/AIMS

Cystic Fibrosis (CF) is caused by mutations in the CFTR gene, encoding a cAMP-activated chloride (Cl-) channel. We have previously demonstrated that the expression of several genes can be modulated by the CFTR activity; among them, SRC, MTND4, CISD1, and IL1B. However, the CFTR signalling mechanism involved in the expression of CFTR-dependent genes is unknown. The aim of this work was to determine if intracellular chloride (Cl-)i might function as a second messenger modulating the expression of specific genes.

METHODS

Differential display (DD) was applied to IB3-1 cells (CF cells), cultured under conditions that produce different intracellular Cl- concentrations ([Cl-]i), to analyse their expression profile.

RESULTS

Several differentially expressed gene products were observed by using DD, suggesting the presence of chloride-dependent gene expression. Two cDNA fragments, derived from differentially expressed mRNAs and showing opposed response to Cl-' were isolated, cloned, sequenced and its Cl- dependency validated by reverse transcription quantitative-PCR (RT-qPCR). We identified the gene RPS27, which encodes the multifunctional ribosomal protein RPS27, also known as metallopanstimulin-1 (MPS-1), and the gene GLRX5, encoding glutaredoxin-related protein 5, as chloride-dependent genes. RPS27 was negatively regulated with increased [Cl-]i, approximately from 25-75 mM Cl- (EC50 = 46 ± 7 mM), and positively regulated from 75-125 mM Cl- (EC50 = 110 ± 11 mM) (biphasic response). In contrast, GLRX5 was positively modulated by [Cl-]i, showing a typical sigmoidal dose-response curve from 0-50 mM Cl-, reaching a plateau after 50 mM Cl- (EC50 ∼ 34 mM).

CONCLUSION

The results suggest the existence of chloride-dependent genes. The Cl- anion, therefore, might act as a second messenger for channels or receptors able to modulate the intracellular Cl- concentration, regulating in turn the expression of specific genes.


DOI: 10.1159/000438608
PubMed: 26741366


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes.</title>
<author>
<name sortKey="Valdivieso, Angel G" sort="Valdivieso, Angel G" uniqKey="Valdivieso A" first="Ángel G" last="Valdivieso">Ángel G. Valdivieso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clauzure, Mariangeles" sort="Clauzure, Mariangeles" uniqKey="Clauzure M" first="Mariángeles" last="Clauzure">Mariángeles Clauzure</name>
</author>
<author>
<name sortKey="Massip Copiz, Macarena" sort="Massip Copiz, Macarena" uniqKey="Massip Copiz M" first="Macarena" last="Massip-Copiz">Macarena Massip-Copiz</name>
</author>
<author>
<name sortKey="Santa Coloma, Tomas A" sort="Santa Coloma, Tomas A" uniqKey="Santa Coloma T" first="Tomás A" last="Santa-Coloma">Tomás A. Santa-Coloma</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26741366</idno>
<idno type="pmid">26741366</idno>
<idno type="doi">10.1159/000438608</idno>
<idno type="wicri:Area/Main/Corpus">000469</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000469</idno>
<idno type="wicri:Area/Main/Curation">000469</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000469</idno>
<idno type="wicri:Area/Main/Exploration">000469</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes.</title>
<author>
<name sortKey="Valdivieso, Angel G" sort="Valdivieso, Angel G" uniqKey="Valdivieso A" first="Ángel G" last="Valdivieso">Ángel G. Valdivieso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina.</nlm:affiliation>
<country xml:lang="fr">Argentine</country>
<wicri:regionArea>Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires</wicri:regionArea>
<wicri:noRegion>Buenos Aires</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Clauzure, Mariangeles" sort="Clauzure, Mariangeles" uniqKey="Clauzure M" first="Mariángeles" last="Clauzure">Mariángeles Clauzure</name>
</author>
<author>
<name sortKey="Massip Copiz, Macarena" sort="Massip Copiz, Macarena" uniqKey="Massip Copiz M" first="Macarena" last="Massip-Copiz">Macarena Massip-Copiz</name>
</author>
<author>
<name sortKey="Santa Coloma, Tomas A" sort="Santa Coloma, Tomas A" uniqKey="Santa Coloma T" first="Tomás A" last="Santa-Coloma">Tomás A. Santa-Coloma</name>
</author>
</analytic>
<series>
<title level="j">Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology</title>
<idno type="eISSN">1421-9778</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Anions (chemistry)</term>
<term>Base Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Cell Line (MeSH)</term>
<term>Chlorides (pharmacology)</term>
<term>Cystic Fibrosis (metabolism)</term>
<term>Cystic Fibrosis (pathology)</term>
<term>Gene Expression (drug effects)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Ionophores (analysis)</term>
<term>Ionophores (chemistry)</term>
<term>Metalloproteins (genetics)</term>
<term>Metalloproteins (metabolism)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nuclear Proteins (genetics)</term>
<term>Nuclear Proteins (metabolism)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA-Binding Proteins (genetics)</term>
<term>RNA-Binding Proteins (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Ribosomal Proteins (genetics)</term>
<term>Ribosomal Proteins (metabolism)</term>
<term>Second Messenger Systems (drug effects)</term>
<term>Sequence Alignment (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Anions (composition chimique)</term>
<term>Chlorures (pharmacologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Ionophores (analyse)</term>
<term>Ionophores (composition chimique)</term>
<term>Lignée cellulaire (MeSH)</term>
<term>Mucoviscidose (anatomopathologie)</term>
<term>Mucoviscidose (métabolisme)</term>
<term>Métalloprotéines (génétique)</term>
<term>Métalloprotéines (métabolisme)</term>
<term>Protéines de liaison à l'ARN (génétique)</term>
<term>Protéines de liaison à l'ARN (métabolisme)</term>
<term>Protéines nucléaires (génétique)</term>
<term>Protéines nucléaires (métabolisme)</term>
<term>Protéines ribosomiques (génétique)</term>
<term>Protéines ribosomiques (métabolisme)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Systèmes de seconds messagers (effets des médicaments et des substances chimiques)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Ionophores</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Anions</term>
<term>Ionophores</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Metalloproteins</term>
<term>Nuclear Proteins</term>
<term>RNA-Binding Proteins</term>
<term>Ribosomal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Metalloproteins</term>
<term>Nuclear Proteins</term>
<term>RNA, Messenger</term>
<term>RNA-Binding Proteins</term>
<term>Ribosomal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chlorides</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Ionophores</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Mucoviscidose</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Anions</term>
<term>Ionophores</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression</term>
<term>Second Messenger Systems</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Expression des gènes</term>
<term>Systèmes de seconds messagers</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Métalloprotéines</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines nucléaires</term>
<term>Protéines ribosomiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cystic Fibrosis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Glutarédoxines</term>
<term>Mucoviscidose</term>
<term>Métalloprotéines</term>
<term>Protéines de liaison à l'ARN</term>
<term>Protéines nucléaires</term>
<term>Protéines ribosomiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Cystic Fibrosis</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorures</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Base Sequence</term>
<term>Binding Sites</term>
<term>Cell Line</term>
<term>Humans</term>
<term>Molecular Dynamics Simulation</term>
<term>Molecular Sequence Data</term>
<term>Protein Structure, Tertiary</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Humains</term>
<term>Lignée cellulaire</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Simulation de dynamique moléculaire</term>
<term>Sites de fixation</term>
<term>Structure tertiaire des protéines</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND/AIMS</b>
</p>
<p>Cystic Fibrosis (CF) is caused by mutations in the CFTR gene, encoding a cAMP-activated chloride (Cl-) channel. We have previously demonstrated that the expression of several genes can be modulated by the CFTR activity; among them, SRC, MTND4, CISD1, and IL1B. However, the CFTR signalling mechanism involved in the expression of CFTR-dependent genes is unknown. The aim of this work was to determine if intracellular chloride (Cl-)i might function as a second messenger modulating the expression of specific genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>Differential display (DD) was applied to IB3-1 cells (CF cells), cultured under conditions that produce different intracellular Cl- concentrations ([Cl-]i), to analyse their expression profile.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Several differentially expressed gene products were observed by using DD, suggesting the presence of chloride-dependent gene expression. Two cDNA fragments, derived from differentially expressed mRNAs and showing opposed response to Cl-' were isolated, cloned, sequenced and its Cl- dependency validated by reverse transcription quantitative-PCR (RT-qPCR). We identified the gene RPS27, which encodes the multifunctional ribosomal protein RPS27, also known as metallopanstimulin-1 (MPS-1), and the gene GLRX5, encoding glutaredoxin-related protein 5, as chloride-dependent genes. RPS27 was negatively regulated with increased [Cl-]i, approximately from 25-75 mM Cl- (EC50 = 46 ± 7 mM), and positively regulated from 75-125 mM Cl- (EC50 = 110 ± 11 mM) (biphasic response). In contrast, GLRX5 was positively modulated by [Cl-]i, showing a typical sigmoidal dose-response curve from 0-50 mM Cl-, reaching a plateau after 50 mM Cl- (EC50 ∼ 34 mM).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The results suggest the existence of chloride-dependent genes. The Cl- anion, therefore, might act as a second messenger for channels or receptors able to modulate the intracellular Cl- concentration, regulating in turn the expression of specific genes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26741366</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1421-9778</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology</Title>
<ISOAbbreviation>Cell Physiol Biochem</ISOAbbreviation>
</Journal>
<ArticleTitle>The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes.</ArticleTitle>
<Pagination>
<MedlinePgn>49-64</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1159/000438608</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND/AIMS" NlmCategory="OBJECTIVE">Cystic Fibrosis (CF) is caused by mutations in the CFTR gene, encoding a cAMP-activated chloride (Cl-) channel. We have previously demonstrated that the expression of several genes can be modulated by the CFTR activity; among them, SRC, MTND4, CISD1, and IL1B. However, the CFTR signalling mechanism involved in the expression of CFTR-dependent genes is unknown. The aim of this work was to determine if intracellular chloride (Cl-)i might function as a second messenger modulating the expression of specific genes.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">Differential display (DD) was applied to IB3-1 cells (CF cells), cultured under conditions that produce different intracellular Cl- concentrations ([Cl-]i), to analyse their expression profile.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Several differentially expressed gene products were observed by using DD, suggesting the presence of chloride-dependent gene expression. Two cDNA fragments, derived from differentially expressed mRNAs and showing opposed response to Cl-' were isolated, cloned, sequenced and its Cl- dependency validated by reverse transcription quantitative-PCR (RT-qPCR). We identified the gene RPS27, which encodes the multifunctional ribosomal protein RPS27, also known as metallopanstimulin-1 (MPS-1), and the gene GLRX5, encoding glutaredoxin-related protein 5, as chloride-dependent genes. RPS27 was negatively regulated with increased [Cl-]i, approximately from 25-75 mM Cl- (EC50 = 46 ± 7 mM), and positively regulated from 75-125 mM Cl- (EC50 = 110 ± 11 mM) (biphasic response). In contrast, GLRX5 was positively modulated by [Cl-]i, showing a typical sigmoidal dose-response curve from 0-50 mM Cl-, reaching a plateau after 50 mM Cl- (EC50 ∼ 34 mM).</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The results suggest the existence of chloride-dependent genes. The Cl- anion, therefore, might act as a second messenger for channels or receptors able to modulate the intracellular Cl- concentration, regulating in turn the expression of specific genes.</AbstractText>
<CopyrightInformation>© 2016 The Author(s) Published by S. Karger AG, Basel.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Valdivieso</LastName>
<ForeName>Ángel G</ForeName>
<Initials>ÁG</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA) and The National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires, Argentina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clauzure</LastName>
<ForeName>Mariángeles</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Massip-Copiz</LastName>
<ForeName>Macarena</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Santa-Coloma</LastName>
<ForeName>Tomás A</ForeName>
<Initials>TA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>01</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Cell Physiol Biochem</MedlineTA>
<NlmUniqueID>9113221</NlmUniqueID>
<ISSNLinking>1015-8987</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000838">Anions</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002712">Chlorides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C516011">GLRX5 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007476">Ionophores</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008667">Metalloproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009687">Nuclear Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016601">RNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C083686">RPS27 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000838" MajorTopicYN="N">Anions</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002460" MajorTopicYN="N">Cell Line</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002712" MajorTopicYN="N">Chlorides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003550" MajorTopicYN="N">Cystic Fibrosis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007476" MajorTopicYN="N">Ionophores</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008667" MajorTopicYN="N">Metalloproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009687" MajorTopicYN="N">Nuclear Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016601" MajorTopicYN="N">RNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015290" MajorTopicYN="N">Second Messenger Systems</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26741366</ArticleId>
<ArticleId IdType="pii">000438608</ArticleId>
<ArticleId IdType="doi">10.1159/000438608</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Argentine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Clauzure, Mariangeles" sort="Clauzure, Mariangeles" uniqKey="Clauzure M" first="Mariángeles" last="Clauzure">Mariángeles Clauzure</name>
<name sortKey="Massip Copiz, Macarena" sort="Massip Copiz, Macarena" uniqKey="Massip Copiz M" first="Macarena" last="Massip-Copiz">Macarena Massip-Copiz</name>
<name sortKey="Santa Coloma, Tomas A" sort="Santa Coloma, Tomas A" uniqKey="Santa Coloma T" first="Tomás A" last="Santa-Coloma">Tomás A. Santa-Coloma</name>
</noCountry>
<country name="Argentine">
<noRegion>
<name sortKey="Valdivieso, Angel G" sort="Valdivieso, Angel G" uniqKey="Valdivieso A" first="Ángel G" last="Valdivieso">Ángel G. Valdivieso</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000410 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000410 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26741366
   |texte=   The Chloride Anion Acts as a Second Messenger in Mammalian Cells - Modifying the Expression of Specific Genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26741366" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020